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Abstract 
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Supervisor(s) of the thesis: Senior Lecturer Martin Jaanus 

Abstract:  

The purpose of this thesis is to provide an alternative approach to currently available non-contact 

Ground Speed Sensors for high-performance automotive applications. Template matching allows for 

the utilization of off-the-shelf machine vision components, simplifying sensor design and facilitating 

the configuration of a sensor specifically for the required performance or cost. A working template 

matching GSS is developed and the important aspects of the development process are described.  

A custom lighting solution is developed to eliminate all effects of natural sunlight/shadows on the 

camera and to generate short intense pulses of light, allowing the camera to achieve shorter 

exposures than otherwise permitted by the camera’s hardware. Additionally, an optimized software 

solution is developed. An efficient multi-threaded algorithm is designed to maximize utilization of the 

embedded computer’s GPU. An alternative approach to the two-step low-resolution→high-resolution 

template matching optimization technique is described, considerably limiting the area to be 

processed by template matching with only a single template matching run. 
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Lühikokkuvõte 

Autor: Henri Johann Norden Lõputöö liik: Bakalaureusetöö 

Töö pealkiri: Malli sobitamise põhimõttel töötav maapinna kiiruse andur 

 

Kuupäev: 2020-05-20 64 lk 

Ülikool: Tallinna Tehnikaülikool 

Teaduskond: Inseneriteaduskond 

Instituut: Elektroenergeetika ja mehhatroonika instituut 

Töö juhendaja(d): vanemlektor Martin Jaanus 

Sisu kirjeldus:  

Antud töö eesmärk on esitada alternatiivne lähenemine olemasolevatele autotööstuses 

kasutamiseks mõeldud kontaktivabadele maapinna kiiruse anduritele. Malli sobitamine võimaldab 

kasutada olemasolevaid masinnägemiskomponente, seeläbi lihtsustades anduri enda ehitust ja 

võimaldades konfigureerida andurit saavutama täpselt vajaminevat jõudlust või hinda. Antud töös 

arendatakse töötav maapinna kiiruse andur ja kirjeldatakse arendusprotsessi olulisi aspekte. 

Luuakse valgustussüsteem, mis kõrvaldab loomuliku päikesevalguse/varjude mõju kaamerale ja 

tekitab lühikesi intensiivseid valgusimpulsse, võimaldades seeläbi kaameral saavutada kaamera 

riistvara piiridest lühemaid säriaegu. Lisaks arendatakse optimeeritud tarkvarakomplekt. 

Disainitakse efektiivne paralleelselt töötav algoritm, mis maksimeerib sardsüsteemi 

graafikaprotsessori kasutust. Kirjeldatakse kahesammulise madala resolutsiooniga→kõrge 

resolutsiooniga malli sobitamise optimeerimismeetodi asemele sobivat ühesammulist ja malli 

sobitamisega töödeldavat ala oluliselt vähendavat meetodit. 

 

 

 

Märksõnad: maapinna kiiruse andur, masinnägemine, autotööstus, sardsüsteem, malli sobitamine 
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List of abbreviations and symbols 

CAN Controller Area Network 

CMOS Complementary metal–oxide–semiconductor 

CPU Central Processing Unit 

CUDA A proprietary platform & API for general purpose parallel computing using Nvidia 

GPUs, developed by the Nvidia Corporation. 

f-number Ratio of an optical system’s (e.g. lens’) focal length to the diameter of the entrance 

pupil (for a camera lens, the entrance pupil is the virtual image of the physical 

aperture as seen through the front of the lens). [1, 2] 

Also known as the focal ratio, f-ratio or f-stop. [1] 

FOV Field-of-view 

fps Frames per second  

When used as a unit, 𝑥 fps is equivalent to a framerate of 𝑥 Hz. 

FWHM Full Width at Half Maximum 

GPU Graphics Processing Unit 

GSS Ground Speed Sensor 

LED Light Emitting Diode 

MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor or metal–oxide–silicon 

transistor 

NMOS n-channel MOSFET 

px Pixel 

QE Quantum Efficiency – incident photon to converted electron (IPCE) ratio. [3] 

 



 

9 

Introduction 

Precise speed measurements are required within the automotive industry for both retrospective 

vehicle dynamics analysis and active real-time stability assist systems. The approach common in 

consumer cars of estimating the vehicle’s speed from a wheel’s rotational speed is inadequate due 

to difficult-to-measure factors, such as tire slip and tire deformation. Therefore, an external sensor 

is required for accurate measurements. Various commercial solutions exist for this very purpose; 

these can be categorized into contact and non-contact/contactless sensors.  

Contact sensors, such as the “fifth wheel”, employ an additional wheel and estimate the vehicle’s 

speed based on the extra wheel’s rotational speed. By using an additional, non-driven, non-load-

bearing wheel, the parasitic factors mentioned earlier are reduced, but not eliminated. Non-contact 

sensors use various techniques to measure a vehicle’s actual speed without any friction-dependent 

component (more details in chapter 1). They can also provide more advanced functionality, such as 

distinct longitudinal and lateral velocity measurements (a “2-axis” GSS). Non-contact sensors are 

therefore used to analyse cornering scenarios and are suitable for use in high-performance stability 

assist systems. 

The purpose of this thesis is to provide a novel configurable approach to the non-contact GSS, 

utilizing a high-performance system-on-module computer for template matching (chapter 2). The 

process of developing a functional prototype is described along with the choice of hardware 

components based on desired sensor specifications (chapter 3). As the sensor’s main parts, the 

camera and lens, are relatively common off-the-shelf machine vision components, it is possible to 

design a range of ground speed sensors with different cost and operating parameters just by 

changing these parts. Consequently, as higher resolution camera models are released, the 

resolution and accuracy of the proposed GSS can also be increased. 

In addition to off-the-shelf components, a custom low-power and low-cost lighting solution is 

developed to vastly improve the effective exposure time of any global shutter monochrome camera 

(3.5). The described solution could also be used in other applications where an exposure time lower 

than the range supported by a camera is required. This requirement could be, for example, due to 

a need to capture a sharp image of a fast-moving object, such as is the case with the proposed GSS. 

During testing, sharp sub-microsecond exposures with a good dynamic range were achieved using 

a CMOS sensor with a 54 μs minimal exposure time. 

The software for the GSS is written in C++ and implements CAN communication for compatibility 

with automotive applications (chapter 4). The OpenCV open source computer vision library is used 

for its CUDA implementation of various template matching methods. Several noteworthy 
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optimizations are made to improve the measurement frequency of the sensor. A multithreaded 

algorithm is developed to ensure maximal utilization of the GPU, which runs the template matching 

algorithm (4.4). A common method for reducing processing time without sacrificing precision is 

applying template matching first on a reduced-resolution frame and subsequently on a limited 

region on the full-resolution frame. By considering the inertia of the measured physical system, an 

alternative algorithm is developed, which skips the reduced-resolution template matching and 

instead selects the limited region based on the previous template matching result (4.7). 
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1. Analysis of available commercial non-contact sensors 

Currently, the two most common concepts for non-contact ground speed measurement are GNSS 

and optical, according to VBOX automotive [4].  A comparison of one high-performance GSS of each 

type is given in Table 1.1. Additionally, a radar-based sensor is included, however the expected use 

case for the sensor is automated agriculture instead of analysis of high-performance vehicle 

dynamics and this is also clear from its significantly lower specifications. Radar-based systems seem 

to be more suited for applications where the highest possible precision is not necessary and 

notably, the listed radar-based GSS does offer a better price-performance ratio than the high-

performance sensors.  

The high price is the main disadvantage of the GNSS and optical sensors. With the possibility of 

using more generic machine-vision components, such as a regular camera, lens and embedded 

computer, in a template matching based GSS might provide an alternative of a sensor with 

adequate performance for a price-point between the low-end (radar) and high-end sensor systems. 

Such a prospect will be explored within this thesis. A template matching based GSS might also be 

able to compete directly with the high-end sensors, with minimal additional development effort, as 

upgrading the sensors components would result directly in improved performance.  

 

 

  

Figure 1.1. VBOX RLVBSS series [5] Figure 1.2. Kistler Correvit SFII [6] 
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Table 1.1. Comparison of the developed machine vision GSS system and available commercial sensors 

 Developed machine 

vision GSS system 

DICKEY-john Radar II 

[7] 

VBOX 

RLVBSS100 [8, 5] 

Kistler Correvit SFII [6, 

9] 

Type Machine vision Doppler radar GNSS Optical 

Cost ~1500 €1 
$798 ≈ 730 € [10, 

11] 

554548 INR

≈ 7550 €  

[12, 13] 
> 10 000 € [14] 

Weight 500 g 2.05 kg 250 g 670 g 

Power < 18 W < 9.6 W 3.7 W 21 W 

Working distance 
150 mm 

(adjustable in design) 

(61 … 240) cm 

Mounted at 35° 

- 

(any) 
(180 ± 50) mm 

Signal latency < 10 ms < 200 ms (7 … 10) ms 

Unknown  

(moving average filter 

8…512 ms) 

Measurement 

freq. 
> 100 Hz < 70 Hz 100 Hz 250 Hz 

Interface 

CAN 

(also possible: USB, 

Ethernet,  

Wi-Fi, I2C, SPI) 

Analog 

CAN, RS232, 

digital 

frequency, 

analog 

CAN, RS-232C, USB, 

digital frequency, 

analog 

Min. velocity 
0.25 km

h⁄  

(equal to resolution) 
0.53 km

h⁄  0.1 km
h⁄  0.3 km

h⁄  

Max. velocity 
110 km

h⁄  

(adjustable in design) 
96.6 km

h⁄  
1000 mph

≈ 1600 km
h⁄  

250 km
h⁄  

Resolution 
0.25 km

h⁄  

(adjustable in design) 

- 

(analogue output 

only) 

0.01 km
h⁄  

 

0.01 m
s⁄

= 0. 036 km
h⁄  

Accuracy 
≥ (0.0833 km

h⁄

+  1.33 %)2 

< 5 % (< 3.2 km
h⁄ ) 

< 3% (> 3.2 km
h⁄ ) 

0.1 km
h⁄  

(4 sample 

average)  

< 0.5 % 

 

1 Only includes the part cost of the system. 

2 Only a baseline is given within this thesis: see item 3.6.2. 
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2. Theory of operation 

2.1 Template matching 

Template matching is a digital image processing technique for identifying possible locations for a 

small image (the template) in a larger base image. There are two main approaches to template 

matching: feature-based and template-based. In a feature-based approach, image features, such 

as edges, lines, blobs and corners, are first detected and extracted from the images [15]. This results 

in descriptions of the template and base image that are invariant to scale, rotation, translation, 

illumination and blur. Then, a feature matching algorithm is run and good matches are filtered out. 

This is sufficient for identifying the template’s location on the base image and, additionally, their 

homography can be found to identify the specific perspective transformation that has taken place 

between the two images. [16, 17] 

Template-based matching is much simpler, but less efficient for high-resolution images and 

intolerant of perspective transformations between template and base images. In template-based 

matching, the template is slid over the base image one pixel at a time, left to right and top to 

bottom. At each location a metric representing the similarity of the template to that specific are of 

the base image is calculated. The output is therefore a 2-dimensional array of probability values, 

where the size of the array is equal to the base image’s size. The minimum/maximum value 

(depending on the used metric) is found and this point is the single best match for the template on 

the given base image. A visual representation of the array with a blue→green color scheme is given 

in Figure 2.1, with the best matching location encircled in red. [18] 

 

Figure 2.1. Template-based matching [19] 
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2.2 Ground speed measurement with template matching 

If a camera is pointed perpendicular to the ground, template matching can be used to measure the 

speed at which the ground moves past the camera. This can be accomplished with the following 

general algorithm: 

1. The camera captures 2 frames with a shift of 𝑡 seconds between the frames. The value of 𝑡 

is determined by the framerate, 𝑓, of the camera: 

𝑡 [s] = 1
𝑓 [fps]⁄  (2.1) 

The value of 𝑡 must be low enough (or, the framerate must be high enough) that a chosen 

area of the first frame (the template) is also captured in its entirety on the second frame. 

2. Template matching is run on the 2nd frame, using the chosen area from the 1st frame as the 

template. The difference between the resulting best match location for the template on 

the 2nd frame and the original location for the template on the 1st frame is calculated. The 

physical movement of the chosen area during the last 𝑡 seconds is now known: 𝑥 pixels for 

the longitudinal axis and 𝑦 pixels for the lateral axis. 

3. The physical size of a pixel must be determined to determine the physical speed for the 

pixel shift values 𝑥 and 𝑦. The methods for this are described in section 3.4. 

4. Finally, the ground velocity can be calculated: 

𝑣𝑥 =
𝑥 ⋅ 𝑝𝑥𝑠𝑖𝑧𝑒

𝑡
,   𝑣𝑦 =

𝑦 ⋅ 𝑝𝑥𝑠𝑖𝑧𝑒

𝑡
, (2.2, 2.3) 

𝑣𝑥, 𝑣𝑦 – longitudinal and lateral velocities, [m
s⁄ ], 

𝑥, 𝑦 – longitudinal and lateral shift in a chosen area between 2 

captured frames, [px], 

𝑝𝑥𝑠𝑖𝑧𝑒  – physical size of a pixel, [m
px⁄ ], 

𝑡 – time shift between the 2 captured frames, [s]. 

 

5. Optional filtering can be applied to the result. A three-value median filter, as used in the 

proposed GSS, allows the system to tolerate the effect of a single random mismatch. As a 

downside, a filter introduces additional signal latency. 
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The following figure shows an example of high longitudinal velocity (x-axis) and negligible lateral 

velocity (y-axis) with both captured frames side-by-side. The area chosen for the template is within 

the dark-gray rectangle and the template matching result is within the white rectangle. 

 

Figure 2.2. Template matching in the GSS (left: left half of 1st frame; right: right half of 2nd frame) 

 

The above images are of asphalt at a kart racing track. The images show a good rock pattern exists 

for template matching to work. The patterns are, however, very random with few large defining 

features. It therefore seems template-based matching is better suited for the task than feature-

based matching. The more advanced nature of feature-based matching offering invariance to 

perspective transformations is also not necessary and would simply increase processing time. 

Although a car’s yaw, roll and pitch can all cause a perspective transformation incompatible with 

template-based matching, the high inertia of the measured physical system and the necessarily low 

time between 2 captured frames ensures that an unmanageable perspective transformation cannot 

occur. This was later experimentally confirmed, as no mismatches attributable to perspective 

transformations were encountered.  



 

16 

2.2.1 Lighting requirements 

For the lighting requirements, it is assumed that a monochrome camera is used (see point 3.3.1). 

For the best matching results, each frame should have a uniform light level across the whole frame. 

Template-based matching compares the pixels in the template and the base image and calculates 

a similarity metric based on the differences in values of each pixel. Therefore, if either of the images 

is uniformly lighter/darker, all the pixel and output similarity metric values shift by the same 

amount and finding the minimum/maximum among them still results in the same match location 

being found. If there is a non-uniform lighting disturbance on one of the images however, only some 

of the pixel values are shifted and so the area on the base image with the most similar light level is 

likely to match the template instead of the area with the most similar texture (Figure 2.3).  

    

Figure 2.3. Mismatch due to lighting differences (blue: template, red: match, green: expected match) 

Such non-uniform lighting disturbances can be easily created by uneven sunlight illumination (in 

Figure 2.3, the bottom part of the image is further under the car that the top) or by shadows from 

specific objects, such as tree branches. To mitigate the issue, the sensor system should have its own 

homogenous light source and should be shielded from external light. This issue is addressed in 

section 3.5. 
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3. Hardware 

3.1 Specification of fundamental sensor parameters 

As the proposed GSS solution could be constructed from a wide range of components, minimum 

requirements for the sensor output must be defined. These requirements will vary between 

applications; the requirements defined within this thesis are solely based on suitability for use on 

the Formula Student Team Tallinn FEST19 car. The established quantitative requirements (Table 

3.1) were however insufficient for component selection, so additional optimization objectives were 

determined (Table 3.2). It should be possible to design a template matching GSS with optimal 

parameters for any application by following the guidelines outlined in the following sections with 

custom application-specific sensor requirements & objectives.  

Table 3.1. Quantitative requirements 

Requirement Value Explanation 

Mounting 

height range 

(ℎ𝑐𝑎𝑚) 

(30 … 300) mm Within this range, parts will remain between the lowest and 

highest point of the monocoque. Any part must not extend 

below the lowest point to avoid collisions with the ground due 

to suspension articulation. The highest point limit was chosen to 

ensure mounting simplicity and aesthetic homogeneity. 

Max. speed 

(𝑣max) 
90 km

h⁄  A velocity value never exceeded by the FEST19 in technical 

dynamic events (i.e. only exceeded in acceleration). 

Measurement 

frequency 

200 Hz FEST19 electronic control unit control cycle frequency.  

Table 3.2. Optimization objectives 

Objective Explanation 

Sensor component 

integration 

simplicity 

Easily integratable and interoperable components aid in reaching the goal of a 

working template matching GSS prototype with limited engineering hours. This 

objective includes mainly comparable factors, such as component documentation 

quality, API quality/simplicity and standard compliance, but also subjective factors, 

such as familiarity with and the popularity of the component’s platform. 

Low price The cost of each component determines the final cost of the sensor.1 

High GSS resolution A higher resolution makes achieving higher accuracies possible with template 

matching and optional additional filtering. 

 

1 As participation in the Formula Student programme is voluntary and unpaid, labor costs were not directly 

considered during development. The first objective of using easily integratable components would however 

likely have an indirect lowering effect on labor costs in a commercial development scenario. 



 

18 

3.2 Template matching computer 

Among embedded computer systems, Nvidia’s Jetson series is one of the most common high-

performance offerings. The Jetson TX1 is more than twice as fast than the Raspberry Pi 3 in many 

CPU benchmarks [20]. However, the main advantage of the Jetson series is the inclusion of a GPU 

with 256 CUDA cores. GPU accelerated template matching using the CUDA framework is natively 

supported by OpenCV, which allows to easily parallelize the demanding template matching 

operation and leaves the CPU free for other tasks. Image processing often naturally maps to GPU 

architectures and this allows for a performance increase of up to 30 times over a CPU 

implementation of the same algorithm [21]. 

The Jetson TX1 module was chosen, because it offers all the benefits of the Jetson series and a spare 

module was available to the Formula Student team. It is noteworthy that newer modules offering 

better performance/price are available at the time of writing: TX2, Xavier NX, AGX Xavier and Nano 

[22]. The Jetson TX1 is a System-on-Chip module, requiring a carrier board to take advantage of all 

or some of the features of the module. The development board offered by Nvidia has a large 

footprint, so a smaller 3rd party carrier was opted for: Auvidea’s J120. The (50x110) mm J120 notably 

offers 2 USB 3.0 ports, Gigabit Ethernet, mini-HDMI, a CAN controller, SPI, I2C, UART and a PCIe M.2 

SSD slot [23].  

 

Figure 3.1. Jetson TX2 (identical dimensions to TX1) mounted on an Auvidea J120 [24] 
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3.3 Camera & lens 

The choice of the camera and its lens is a complicated problem, as the GSS’s main measurement 

characteristics are determined by a combination of the camera’s and lens’ parameters and the 

camera’s mounting height. Some notable effects of changing these parameters are listed in the 

following table, with each row representing an input parameter and each column a change 

potentially resulting from modifying an input parameter. 

Table 3.3. Effects of changing camera/lens parameters ('+' denotes a positive and '-' a negative correlation) 

  GSS system output parameters Cost Image Other 

Input (chosen) 

parameters 

M
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M
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4  

C
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Framerate +  + + + + +    + 

Resolution +  +   + +     

Exposure 

time 

decrease4 

 + +   +  + -   

Sensor size      +   + -  

Le
n

s 

Focal 

length 
+ - +     -  + - 

f-number         + -   

O
th

e
r Mounting 

height 

decrease4 

+ - +       +  

 

1 A decrease in the parameter is specified for parameters where a lower value desirable. This way, a positive 

correlation (+) in the resulting table most often reflects a ‘desirable’ relationship and a negative correlation 

(-) reflects an ‘undesirable’ one. 

2 A decrease in angular FOV reduces the volume of free space which must be reserved for the camera, so that 

no objects come into the camera’s view.  
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The main parameters considered were camera framerate, camera resolution, camera mounting 

height, lens focal length and additionally the prices of the respective components. The following 

figures exemplify the changes to the final system caused by changes in these parameters. The 

formulas for quantitive analysis of these effects are given within the following items of this section. 

 

Figure 3.2. The effect of camera framerate, mount height and lens focal length on max. measurable speed 

 

Figure 3.3. The effect of camera framerate, mount height and lens focal length on measurement resolution 
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3.3.1 Camera 

The Ximea xiQ camera series was found to be 

best suited for the application. Ximea officially 

supports the Jetson TX1 and has well-

documented API packages available for C++, 

.NET and Python. The xiQ MQ003MG-CM 

camera has a low cost, small dimensions of (26 

x 26 x 24) mm, low mass of 26 grams, low power 

consumption of 1.5 W, USB 3 connectivity and 

a CMOSIS CMV300 1/3” monochrome global 

shutter sensor. Monochrome sensors are 

beneficial as they are more sensitive due to the lack of color filters and asphalt possesses very little 

color information regardless. The camera is capable of capturing (648x488) pixel frames in 54μs 

exposures at 500 fps, whereas most similarly priced higher resolution cameras must be limited to a 

similar/lower resolution to reach such a framerate. Additionally, the camera supports C/CS mount 

lens and has a GPIO port. It must be noted that it is possible for newer superior camera models to 

exist at the time of writing. [25] 

 

 

Figure 3.5. Quantum efficiency of the CMOSIS CMV300 sensor used by the MQ003MG-CM camera [26]  

Figure 3.4. Ximea xiQ MQ003MG-CM [23] 
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3.3.2 Parameter calculations – mounting height & lens focal length 

Given the choice of camera, the following constants were fixed to determine the mounting height 

for the camera lens, ℎ𝑐𝑎𝑚, and the desired lens focal length, 𝑓𝑙: 

Frame width 𝑤 = 648 px, 

Frame height  ℎ = 488 px, 

Sensor width 𝑤𝑠𝑒𝑛𝑠𝑜𝑟 = 4.8 mm, 

Sensor height ℎ𝑠𝑒𝑛𝑠𝑜𝑟 = 3.6 mm, 

Reserved width for reversing (negative velocity)  𝑤𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 10 px, 

Template width  𝑤𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 = 100 px, 

Max velocity  𝑣max = 90 km
h⁄ , 

Time between captured frames 𝑡𝑓𝑟𝑎𝑚𝑒 = 1
500 fps⁄ = 2 ms. 

 

Figure 3.6. Frame dimensions 
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The following optical relationships exist: 

𝛼 = 2 ⋅ arctan
𝑤𝑠𝑒𝑛𝑠𝑜𝑟

2 ⋅ 𝑓𝑙
, (3.1) [27] 

𝛼 – angle of view of the lens, [°], 

𝑓𝑙 – focal length of the lens, [mm]. 

 

𝑤𝑓𝑟𝑎𝑚𝑒 = 2 ⋅ tan (
𝛼

2
) ⋅ ℎ𝑐𝑎𝑚, (3.2) [27] 

𝑤𝑓𝑟𝑎𝑚𝑒 – optical system’s (camera & lens) linear field of view, [mm], 

ℎ𝑐𝑎𝑚 – camera mounting height, [mm]. 

 

 

The maximum and minimum measurable velocities can be found with the following formulas: 

𝑤𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑤 − 𝑤𝑟𝑒𝑣𝑒𝑟𝑠𝑒 − 𝑤𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 = 538 px, (3.3) 

𝑤𝑓𝑜𝑟𝑤𝑎𝑟𝑑  – frame width usable for forward movement such that no part of the 

template at the match location extends beyond the frame, [px]. 
 

𝑝𝑥𝑠𝑖𝑧𝑒 =
𝑤𝑓𝑟𝑎𝑚𝑒

𝑤
, (3.4) 

𝑝𝑥𝑠𝑖𝑧𝑒  – the physical size of a pixel, [mm
px⁄ ].  

𝑤𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑝ℎ𝑦𝑠
= 𝑤𝑓𝑜𝑟𝑤𝑎𝑟𝑑 ⋅ 𝑝𝑥𝑠𝑖𝑧𝑒 , (3.5) 

𝑤𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑝ℎ𝑦𝑠
 – usable frame width’s physical size (on the ground), [mm].  

𝑣max =
𝑤𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑝ℎ𝑦𝑠

𝑡𝑓𝑟𝑎𝑚𝑒
, (3.6) 

𝑣max – maximum measurable velocity, [mm
ms⁄ = m

s⁄ ].  

𝑣min =
𝑝𝑥𝑠𝑖𝑧𝑒 ⋅ 1 px

𝑡𝑓𝑟𝑎𝑚𝑒
, 

(3.7) 

𝑣min – minimum measurable velocity, which is also the resolution of the system, 
[mm

ms⁄ = m
s⁄ ]. 
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The given formulas were implemented in an Excel spreadsheet. As the value for 𝑣max is already fixed 

and instead the values for 𝑓𝑙 and ℎ𝑐𝑎𝑚 are required, the Excel Solver tool was used to solve for the 

missing variables. With ℎ𝑐𝑎𝑚 fixed to the extreme values of the range specified in Table 3.1, the 

formulas were solved for 𝑓𝑙. The specific solution found for the acceptable range for 𝑓𝑙 =

(2.4 … 23.9) mm: 

Table 3.4. Additional fixed values used to solve for focal length 𝑓𝑙 

 Max velocity 𝒗max Mounting height 𝒉𝒄𝒂𝒎 Focal length 𝒇𝒍 

Min 
90 km

h⁄ = 25 m
s⁄  

30 mm ~2.4 mm 

Max 300 mm ~23.9 mm 

 

 

 

  



 

25 

3.3.3 Lens 

Within the acceptable focal length range of (2.4 … 23.9) mm, there are additional constraints to 

consider. A shorter focal length results in a wider field of view with more optical distortion and 

requires the camera to be mounted closer to the ground (Figure 3.2, Figure 3.3; the opposite is also 

true for longer focal lengths). This reduces the amount of free space required but increases the 

system’s sensitivity to changes in height. Instead, it would be ideal to remove any dependence on 

mounting height therefore also eliminating the effects of height changes – this could be 

accomplished by utilizing a telecentric lens. With a telecentric lens the magnification of an object 

does not depend on the lens’ distance from the object. Using a telecentric lens was considered, but 

due to the large size of their optics and consequent high cost it was decided to use a conventional 

lens along with a height measurement sensor to eliminate the error.  

While a short focal length results in more optical 

distortion and sensitivity to height variation, a 

long focal length results in a shallow depth of 

field. A shallow depth of field could mean that 

when the lens’ height changes, the ground 

moves out of focus and a blurry image is created. 

Both optical distortion and image blur can result 

in mismatches during template matching, 

therefore it is desirable to avoid both. The 

Computar M1214-MP2 lens with a 12 mm focal 

length offered a middle ground between the two 

sides at a low cost and small physical footprint 

(⌀33.5 mm × 28.2 mm, 61.9 g) [28]. 

With the focal length 𝑓𝑙 fixed to 12 mm it is now 

possible to solve for the mounting height ℎ𝑐𝑎𝑚. With the same initial fixed parameters (given in 

item 3.3.2), the ideal mounting height for the lens (as measured from the ground to the outer-most 

lens of the lens assembly) is approximately ℎ𝑐𝑎𝑚 = 150 mm. With the chosen values, the system’s 

final maximum velocity, 𝑣max, can be calculated to verify the result. Using the designed Excel 

spreadsheet and the formulas described in the previous item, a max velocity value of 𝑣max ≈

89.667 km
h⁄  (close to the desired 90 km

h⁄  max velocity) and a min velocity value of 𝑣min ≈

0.166 km
h⁄  is calculated.  

Figure 3.7. Computar M1214-MP2 [32] 
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3.3.4 Required camera exposure time 

Using the previously calculated values, it can be shown that the 54μs minimum exposure time of 

the MQ003MG-CM on its own is inadequate for use in a high-speed automotive application such as 

the proposed GSS. The minimum exposure time is too high to allow a clear image to be captured 

while the car is in motion. The resulting motion blur negatively affects template matching 

performance, as contrast is lost due to pixels being assigned values averaged over their neighbours. 

The maximum exposure time, which avoids a pixel overlap and therefore motion blur, can be 

calculated with the formula: 

𝑡exp𝑟𝑒𝑞
=

𝑝𝑥𝑠𝑖𝑧𝑒 ⋅ 1 px

𝑣
, 

(3.8) 

𝑡exp𝑟𝑒𝑞
 – required exposure time to avoid pixel overlap at the given velocity, [μs], 

𝑝𝑥𝑠𝑖𝑧𝑒  – the physical size of a pixel, [mm
px⁄ ], 

𝑣 – velocity, [mm
μs⁄ ]. 

 

At the chosen height of ℎ𝑐𝑎𝑚 = 150 mm and desired maximum velocity of 𝑣max = 90 km
h⁄ , an 

exposure time of 𝑡exp ≤ ~3.7 μs is required. The 54 μs supported minimum exposure time of the 

MQ003MG-CM avoids motion blur only up to a velocity of 𝑣 ≈ 6.2 km
h⁄ . This issue is addressed in 

section 3.5. 

 

Figure 3.8. Maximum exposure time avoiding pixel overlap during an exposure  
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3.4 Suspension travel compensation – height sensing 

Given that a telecentric lens is not used, a height reading is required to compensate for the vertical 

movement of the car where the GSS is mounted. The movement is chiefly caused by suspension 

travel and in a smaller proportion by tire deformation. It might be possible to use existing 

suspension position sensors to generate the car height reading, but due to the complexity of 

assessing momentary tire deformation, it was decided to use an external time-of-flight distance 

sensor instead. The low-cost STMicroelectronics’ VL6180X time-of-flight proximity and ambient 

light sensor was chosen for this purpose. Three redundant Adafruit VL6180X development boards, 

each featuring a VL6810X sensor and necessary supporting components, were mounted inside the 

underbody of the car (~30 mm above ground at rest), with holes in the underbody for sensing.  

 

Figure 3.9. VL6180X typical ranging performance [29] 

 

The VL6180X can measure with an absolute error of 𝑒𝑟𝑟 ≤ 2 mm at up to 100 mm, which is enough 

to cover the suspension travel range. The maximum possible error can be calculated by calculating 

a new max velocity value, 𝑣max
′ , with the same method as described in 3.3.3 by replacing the value 

of ℎ𝑐𝑎𝑚 with (ℎ𝑐𝑎𝑚 + max 𝑒𝑟𝑟)  = 150 mm + 2 mm = 152 mm. This gives a new max velocity 

value of 𝑣max
′ = 90.862 km

h⁄ . The proportional error caused by the VL6180X sensor, 𝑒𝑟𝑟%, can now 

be calculated as follows: 

𝑒𝑟𝑟% = ±
𝑣max

′ − 𝑣max

𝑣max
= ±

1.195

89.667
≈ ±1.33 % 

(3.9) 

Figure 3.10. Adafruit VL6180X [33] 
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During on-track testing of the proposed GSS system, the VL6180X sensor was found to be unsuitable 

for this application. While the maximum proportional error, 𝑒𝑟𝑟%, from the VL6180X is relatively 

large compared to commercial GSS systems, it was assumed that the possibility of mitigating this 

error via filtering or calibrating the proximity sensor exists. This was not the case however, as the 

error exhibited itself as random noise even with the sensor’s averaging time set to the maximum 

value of ~16 ms. Calibration was also unsuccessful, as the proximity sensor’s median output value 

could drift by as much as 1 mm over the course of 1 hour in a temperature and light controlled 

environment. Any noise from the proximity sensor directly induced noise into the GSS output, as 

seen in Figure 3.11. 

 

Figure 3.11. Noisy GSS linear velocity output when utilizing the VL6180X proximity sensor (yellow) 

compared to wheel rotational velocity sensor output (cyan) 
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3.5 Lighting solution 

A lighting solution is required to provide adequate lighting for the low exposure times required and 

can additionally be used to limit the exposure time itself. To accomplish this, the camera’s exposure 

to sunlight was limited with a 630 nm band-bass filter ( (30 ± 5) nm FWHM). With the filter, the 

camera’s exposures are practically unaffected by natural sunlight and shadows. For lighting, high-

power 621 nm (18 nm FWHM) 120° Osram KR DMLS31.23 SMD LEDs were used (peak is at 52% 

QE: Figure 3.5). The LEDs are rated for a nominal current of 1 A and a surge current of 2.5 A. 

 

Figure 3.12. lighting band-pass filter and LED wavelengths on the solar irradiation spectrum [30] 

A custom PCB was designed to interface with the 

camera’s GPIO and generate a short intense pulse of 

light using LEDs. To achieve high currents a typical 

current-limiting resistor was omitted and current 

regulation was to be performed by tuning the LED 

driving voltage (potentiometer on A1, Figure 1.1). The 

worst-case operating conditions for the LEDs would be 

a constant 500 fps capture by the camera (no skipped 

frames) with 3.7 μs on-time (as per 3.3.4). At worst-

case operating conditions the LEDs would be operating 

at a duty cycle of 
3.7 μs

1 ÷ 500 fps⁄ =
3.7 μs

2 ms⁄ =

0.00185. As the KS DMLS31.23 datasheet abruptly cap 

the current capacity at 2.5 A (Figure 3.13) at a pulse 

time > 200 times longer and a duty cycle > 2.5 times 

larger than desired, it was assumed the LEDs could 

likely be driven at currents exceeding the rating.  

Figure 3.13. LED pulse current capacity 
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Figure 3.14. LED pulse characteristic (Y-axis scale: 1 A
10 mV⁄ )  

The LEDs were driven at a voltage of 6.5 V across the 2 LEDs in series (3.25 V per LED, see Figure 

3.16) and peak current of 7.6 A for 1 μs pulses. The LED driving waveform, as seen in Figure 3.14, 

indicates parasitic inductance in the circuit and poor LED trigger NMOS driving performance. The 

poor NMOS driving performance could be attributed to a footprint design fault, which forced the 

omission of the high-current push-pull MOSFET driver (DRV1, Figure 3.15). The circuit was 

completed by having the single 555 timer drive 20 LED MOSFETs directly. 

 

Figure 3.15. LED trigger signal generation circuit 
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The LED performance degraded during testing, but it was likely caused by an EMF noise issue 

instead of driving the LEDs over their rated values. Due to noise on the trigger signal cable 

generated by the physical proximity to the formula car’s battery’s HV wires, on initial in-car tests 

the LEDs were triggered randomly and much more often than the camera’s maximum framerate of 

500 Hz. The trigger signal noise was eliminated by replacing the unshielded signal cable with a 

shielded one, but only when the shielding was connected to both the camera’s shield ground and 

the PCB’s ground plane. The incident had likely irreversibly damaged the LEDs, since the PCB’s 

voltage and time parameters had been first set and the brightness assessed using a bench-top 

power supply – the LEDs were dimmer and the camera’s gain had to be increased from 0 to 2 dB to 

compensate. 

 

Figure 3.16. LED circuit (repeated 20 times) 

 

The LED schematic (Figure 3.16) was repeated 20 times in the design software, for a total of 40 LEDs 

on the final PCB. This results in a peak power of 40
2⁄ ⋅ 6.5 V ⋅ 7.6 A = 988 W, while the average 

consumption of the board in only around 1 W (as measured by a bench power supply). Therefore, 

the designed pulsing light PCB provides high light intensity with optimal energy usage compared to 

common always-on ring lamps. The PCB design emulates a ring lamp, with LEDs placed regularly 

around the central camera viewing hole, albeit without a diffuser as it was not found to be 

necessary for dry conditions. A diffuser is likely to help in wet conditions, however, as glare and the 

resulting uneven frame lighting caused the system to malfunction. (Renders of the final PCB: Figure 

3.17 & Figure 3.18.)  
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Figure 3.17. Lighting PCB top side 

 

 

Figure 3.18. Lighting PCB bottom side 
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3.6 Final system 

3.6.1 Housings 

The camera was mounted along the middle of the car’s longitudinal axis, near the rear axle, on the 

back wall of the car. The back wall supplied a highly rigid mounting point and a hole integrated into 

the diffusor for line of sight with the ground. A high-rigidity carbon-fiber clamp was designed to 

mount the camera steadily to the back wall (Figure 3.19). Additionally, a 3D printed housing for the 

camera and lighting system was designed, to provide water and dirt resistance for the parts 

mounted outside the body of the car (Figure 3.20; note the render also includes the non-3D-printed 

camera mount). To ensure the housing is waterproof, all cables were sealed with a strong epoxy 

into the 3D printed housings and a sealant was applied to seams between the different housings. 

 

 

Figure 3.20. Full camera & lighting system housing/mount 

 

 

 

Figure 3.19. Camera mount 
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Figure 3.21. Exploded view of the full camera & lighting system housing/mount 
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A 3D printed housing was also designed for the internally mounted Jetson computer. The housing 

was designed to be mounted on the inner side of the back wall – near the camera mount. An 

important aspect of the Jetson housing was to be easily removable to allow for servicing of the car’s 

other systems through the back wall opening. To achieve this a 2-part sliding solution was 

developed: the top housing containing the Jetson itself could be slid and wedged into place onto 

the lower part which would be mounted to the car with bolts. 

 

 

Figure 3.22. Jetson computer housing & mount 
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3.6.2 Calibration 

To eliminate any possible error from deviations in mounting height, the height of the camera and 

lens must be calibrated in the car’s resting position once mounted. Any deviation from the resting 

position is then compensated by the height sensor. The result of the calibration is a function, 𝑓, 

which maps the height sensor reading, ℎ, (representing the camera’s height) to a corresponding 

pixel size, 𝑝𝑥𝑠𝑖𝑧𝑒, value: 𝑓(ℎ) = 𝑝𝑥𝑠𝑖𝑧𝑒. Calibration should be done on flat ground, to ensure 

consistent measurements. The method of calibration used is as follows: 

1. In the car’s resting position, height measurement results are saved for > 5 min, resulting 

in a median value of ℎ𝑚𝑒𝑑1
. 

2. The physical size of a pixel in the first position, 𝑝𝑥𝑠𝑖𝑧𝑒1
, is found by measuring the width of 

the frame at the ground level, 𝑤𝑓𝑟𝑎𝑚𝑒1
, with a ruler and applying formula (3.4). 

3. Platforms of equal height are placed under each wheel. 

4. In the new position, steps 1 and 2 are repeated, resulting in measurement results ℎ𝑚𝑒𝑑2
, 

𝑝𝑥𝑠𝑖𝑧𝑒2
 (and 𝑤𝑓𝑟𝑎𝑚𝑒2

). 

5. Two points are constructed: (ℎ𝑚𝑒𝑑1
, 𝑝𝑥𝑠𝑖𝑧𝑒1) and (ℎ𝑚𝑒𝑑2

, 𝑝𝑥𝑠𝑖𝑧𝑒2). A linear relationship 

exists between ℎ𝑚𝑒𝑑 and 𝑝𝑥𝑠𝑖𝑧𝑒, therefore the function 𝑓(ℎ) is given by a line passing 

through these points with the additional constraint of ℎ ≥ 0. 

The resulting function was directly implemented into the GSS program, as the last line of 

getPixelSize function in Code 3.1. (See chapter 4. Software for more details about the software.) 

 

Code 3.1. Proximity sensor calibration function 

// Calibration function 
double getPixelSize(int range = -1) { // in mm - REQUIRES CALIBRATION 
 if (range == -1) range = lastGSSRange; // use saved proximity sensor reading 
 if (OPTIONS.RANGE_ENABLED == 0) range = 38.9; // proximity sensor disabled 
  
 return (double)range * 0.00207043 + 0.04952005; 
} 
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3.6.3 Accuracy 

The accuracy of the proposed GSS relies on template matching working consistently and accurately. 

Determining whether this is the case is not a simple task and is outside the scope of this thesis. A 

baseline for the sensor’s accuracy can however be given based on the error caused by the height 

sensor and the resolution of the camera. For the following calculation it is assumed that template 

matching is always perfectly accurate. Also noteworthy is the fact that the proportional error from 

the height sensor could be eliminated by e.g. utilizing a telecentric lens, which makes the height 

sensor redundant. 

𝑒𝑟𝑟𝐺𝑆𝑆 = ± (
𝑣min

2
+ |𝑒𝑟𝑟%ℎ𝑒𝑖𝑔ℎ𝑡

|) = ±(0.0833 km
h⁄ +  1.33 %) (3.10) 

𝑒𝑟𝑟𝐺𝑆𝑆 – GSS system total error, 

𝑣min – resolution of the camera, [km
h⁄ ], 

𝑒𝑟𝑟%ℎ𝑒𝑖𝑔ℎ𝑡
 – the proportional error caused by the height sensor, [%]. 
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4. Software  

The main GSS program was written in C++17 and utilizes OpenCV 2.4.13 from Nvidia’s JetPack 2.3.1 

all-in-one software development package, which was installed on the Jetson TX1. JetPack 2.3.1 

includes Nvidia’s L4T (Linux For Tegra) OS image with a file system derived from Ubuntu. [31] The 

overall experience of Nvidia’s L4T was similar to desktop Ubuntu, as all packages desired during 

development had been precompiled to ARM and were available from the included APT (Advanced 

Packaging Tool) package sources. The Jetson was remotely accessed over SSH (Secure Shell) and 

VNC (Virtual Network Computing) for writing, building and testing/debugging the main program. 

Development was done using the Geany IDE (Integrated Development Environment) and JetPack’s 

included gcc version was used to compile the program on the Jetson itself. 

 

4.1 Command-line interface, configurability 

The GSS main program is launched from the command line and to ease testing different 

configurations on the car, most options (see Code 4.3) were made to be configurable from the 

program’s command line interface. Aside from testing, this also allows the program to be run from 

a script with the desired options saved within the script. For use during competitions, a systemd 

service was created to run a GSS main program launch script. The launch script disables unnecessary 

services, which were determined to use the CPU otherwise, to improve performance and launches 

the main program with the saved command line options. 

Code 4.1 GSS launch script Code 4.2 “stop-everything.sh” 

#!/bin/sh 
bash /home/ubuntu/GSS/src/scripts/stop-everything.sh 
while : ; do  
nice -n -20 \ 
/home/ubuntu/GSS/src/scripts/emc_wrapper.sh \ 
    /home/ubuntu/GSS/src/main \ 
 -main_stdout_lvl 20 \ 
 -stdout_lvl 60 \ 
 -log_lvl 20 \ 
 -dbg_time \ 
 -noimg \ 
 -saveevery 10 \ 
 -saveimg 0 \ 
 -get_pics_delay 2300 \ 
 -can 1 \ 
 -cropimg 0 \ 
 -gain 6 \ 
 -range 0 \ 
 -range_use 2 \ 
 "$@"; done     

#!/bin/sh 
 
# Included in JetPack 
/home/ubuntu/jetson_clocks.sh  
 
service x11vnc stop 
service lightdm stop 
service rsyslog stop 
service systemd-journald stop 
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Code 4.3. GSS program help command line flag (-?) output – all possible command line flags 

  ===== COMMAND LINE OPTIONS ===== 
-noimg    - no image window 

-showevery <i>   - set image show frequency to every n-th image  
-saveimg <i>   - n=1: save images; n=2: save image pairs  
-saveevery <i>   - set image save frequency to every n-th image/pair  
-range <0...3>   - amount of range sensors  

-range_use <0...2>   - 0 - all sensors, 1 - bus #0, 2 - bus #2  
-singe_loops   - waits for new line (enter key) before starting each template matching thread fn loop 
 

  ===== CAN OPTIONS ===== 
-can <0...3>   - 0: CAN disabled, 1: GSS output, 2: GSS output & acc input, 3: acc input & all output  
-can_output 4*<0/1>  - 1@0 debug msg, 1@1: separate messages, 1@2: measured speed, 1@3: calculated speed  
-can_rx_id <i>   - CAN acceleration message ID  

-can_tx_id <i>   - CAN output message ID  
-can_tx_id_calc <i>  - CAN output message ID for calculated speeds  
-can_tx_id_dbg <i>   - CAN debug message ID (default %i) 

-can_acc_multi <d>   - received acceleration multiplier for template estimation  
 
  ===== DEBUGGING OPTIONS ===== 
-dbg_all    - enables all dbg_ flags 

-dbg_time    - log the time taken by various operations 
-dbg_sig    - log multithreading signal changes (also logs signal wait times) 
-dbg_sig_wait   - only log multithreading signal wait times 

-dbg_timing   - log when various multithreaded operations are started 
-dbg_can    - log received/sent can messages 
-dbg_range   - log range sensor info 
 

  ===== LOGGING OPTIONS ===== 
   LOG LEVELS: [10: CRIT, 20: ERR, 30: WARN, 40: LOG, 50: INFO, 60: DBG] 
-logdir <str>   - set the base log directory (MUST be an abolute path!)  

-log_lvl <i>   - max log level written to log files  
-stdout_lvl <i>   - max log level printed to terminal  
-main_stdout_lvl <i>  - if set, then log_lvl will be changed to this value once program initialization ends and 
the main loop begins 

-log_sec_pre <i>    - set log sub-second prescision  
-log_hide_line_nr    - source code line numbers will not be added to log messages 
-log_hide_func_name  - source file and function names will not be added to log messages 

 
  ===== CAMERA OPTIONS ===== 
-cam_timeout <i>   - camera image aquisition timeout in milliseconds  
-exp <66...>   - camera exposure time in microseconds  

-gain <0.0-6.9>   - camera analog gain in dB  
-get_pics_instantly  - frame acquisition will NOT start until template matching is completed 
-get_pics_delay <i>  - frame acquisition will start after <i> microsec from the start of template matching  

-cam_reset   - reset the camera at the beginning of the program 
-cam_noflip   - disable horizontal image flipping 
 
  ===== DATA LOGGING OPTIONS ===== 

-log_acc <0/1>   - log acceleration received from CAN  
-log_spd <0...2>   - 1: log GSS speed, 2: log speed from GSS and speed calculated for acceleration  
-log_angle <0/1>   - log calculated car angle  

 
  ===== IMAGE CROPPING OPTIONS ===== 
-cropimg <0/1>   - disable/enable image cropping based on current speed (reducing the template matching area)  
-crop_stop <Ld>   - cropping cutoff speed, based on GSS speed  [km/h] 

-crop_start <Ld>   - cropping restart speed, based on wheel speed  [km/h] 
-max_acc <d>   - in g; worst-case acceleration value for cropping in case no CAN msg is received  
-crop_err <i>   - in pixels; extra size added to the cropbox  

-crop_t_err <d>   - in pixels / ms; extra size added to the cropbox for every ms since last GSS measurement  
 
  ===== TEMPLATE MATCHING OPTIONS ===== 
-match_method <0-5>  - openCV template matching method  

-templ_x <i>   - template x coordinate  
-templ_y <i>   - template y coordinate  
-templ_rect_x <i>   - template rectangle size along the x axis  

-templ_rect_y <i>   - template rectangle size along the y axis  
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4.2 Data output – CAN bus 

The CAN bus protocol was chosen as the communication interface to be implemented in the 

prototype GSS. This choice was made, since the main communication bus in the Formula Student 

Team Tallinn cars is a CAN bus and the CAN bus is commonly used in other automotive applications 

as well. It must be noted, however, that owing to the general-purpose nature of the Nvidia Jetson 

platform, many different interfaces are natively supported. It would therefore be trivial and require 

no additional hardware to support communication over any of the supported interfaces, including: 

Ethernet, WiFi, Bluetooth 4.0, USB 2.0/3.0, UART, SPI, I2C [32]. Communication is implemented 

using the open source SocketCAN driver included in the Linux kernel. 

 

4.3 Device-local logging for debug purposes 

During development, it is desirable to log values additional to the outputted measurement results 

of the sensor to ease debugging in real-life test scenarios where using a debugger is impractical. 

The C++ standard library does not include any logging utilities, but the open-source peer-reviewed 

Boost library set does include a library, Boost.Log, for this purpose [33]. However, the Boost.Log 

library does not itself implement a simple way of logging the file name and line number of the 

source code which resulted in the logged message. It was decided to implement a simple logging 

interface with such functionality instead of using workarounds for the Boost.Log library. A single 

compiler macro is used to implement the logging of the caller’s line number, source file name and 

function:  

Code 4.4. Logging macro and function prototype ("log.hpp") 

#define printLog(...) _printLog(__FUNCTION__, __FILE__, __LINE__, __VA_ARGS__) 

void _printLog(const char* FUNC, const char* FILENAME, int LINE,  

    int logLevel, const char* frmt, ...); 
 

The printLog function macro emulates and extends the functionality of the standard printf 

function by accepting a log level indicator, a printf-style format string and any number of arguments 

beyond it. The _printLog function called by the macro integrates with global settings and allows 

the minimum log level of messages to be print to console/logged to file to be (separately) set via 

command line arguments (A2.1). Due to the simple configurability, the printLog function is used 

for both debug logging and standard real-time operation monitoring. For an excerpt of the debug 

log generated for a single template matching cycle see A2.2.1. 
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4.4 Program loop 

The main GSS program consists of a main thread, which checks/initializes the required devices, 

starts 6 processing threads and thereafter only handles displaying captured images for real-time 

debugging if configured to do so from the command line (A2.3). The started threads are: frame 

acquisition (from camera), template matching, output (calculates the velocity and writes it to 

CAN/logs), CAN reader and 2 height sensor threads. The CAN reader and height sensor threads 

operate independently from the other threads, reading data in whenever it becomes available. The 

other 3 threads are tightly interwoven to minimize unnecessary waiting and therefore improve 

performance. 

C++ mutex locks were used to synchronize the threads in key checkpoints to ensure the correct 

order of execution for the algorithm is always followed. These were implemented as “signals”: a 

thread would set a specific signal when a key action was preformed meanwhile other threads could 

wait for the signal to be set before continuing execution. Using standard mutex locks for this avoids 

busy-waiting. In Table 4.1, a high-level representation of the algorithm implemented on the 3 

threads is given, in top-to-bottom order. Rounded rectangles represent an action of a given thread; 

actions connected with lines are executed consecutively. Light-blue actions indicate that a signal is 

set after the action completes. Actions beginning from a signal line wait for that signal to be set 

before starting. The red arrow represents the part of the algorithm which is looped indefinitely. 

The main goal of the described algorithm is to keep the GPU constantly busy running the template 

matching algorithm. Frames for the next template matching execution are acquired just-in-time  for 

the completion of template matching on the previous frames: if they were captured after template 

matching finishes, a 1 fps⁄ = 2 ms delay would be introduced; if they were captured too early, the 

output velocity signal latency would increase. Output is also handled by a separate thread, as it 

handles multiple slow operations: calculating the velocity requires the minimum/maximum to be 

found from the template matching output array and saving the frames for later debugging means 

a transfer from RAM to disk is required.  

Implementing the velocity measurement itself is trivial: the original location of the template is pre-

determined and therefore known; the time shift between 2 frames is fixed by the camera settings 

(2 ms in the case of a 500 fps camera). After template matching is completed and the template’s 

new location is found, the shift in location within 2 ms can be found by subtracting the original 

template location. The location shift is multiplied by the value given by the calibration function 

described in 3.6.2 and divided by the time shift to find the velocity. A 3-value median filter is then 

applied to the velocity readings before being output to the car’s CAN network.  



 

42 

Table 4.1. Main algorithm of the GSS program 
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4.5 Camera integration 

For interaction with the camera, Ximea’s xiAPI C++ API was used. The camera is first initialized with 

default or command-line defined parameters and a software trigger signal is issued to the camera 

to capture 2 consecutive frames. The frames are first stored in a CPU RAM buffer and copied over 

to GPU RAM. As the Jetson TX1 does not have dedicated GPU memory, the same physical RAM is 

shared by both the CPU and GPU and a zero-copy approach is theoretically possible by setting a 

CUDA flag: cudaSetDeviceFlags(cudaDeviceMapHost) [34, 35]. This approach was not 

successfully implemented and the CPU-to-GPU memory copy was retained. A memory optimization 

that was made, however, consists of pre-allocating and reusing the same GPU memory buffers. The 

buffers are initialized as OpenCV’s cv::gpu::GpuMat objects and cudaMemcpy is used to copy data 

directly from the xiAPI camera buffers to GPU memory. 

 

Code 4.5. Example of direct copy from xiAPI XI_IMG to OpenCV GpuMat 

int image_size; XI_IMG xi_img; int frame_height = 488; int frame_width = 648; 

 

xiGetParamInt(xiH, XI_PRM_IMAGE_PAYLOAD_SIZE, &image_size); 

cv::gpu::GpuMat gpu_mat = cv::gpu::GpuMat(frame_height, frame_width, CV_8U, gpu_mat); 

cudaMemcpy(gpu_mat.data, xi_img.bp, image_size, cudaMemcpyHostToDevice); 
 

 
 
4.6 Height sensor integration 

For the VL6180X sensor, the API needed to be ported to the Jetson platform. The API provided by 

STMicroelectronics implements most high-level functions of the sensor in C, leaving the low-level 

device specific I2C access to be implemented by the developer. On the Jetson TX1, the I2C interfaces 

can be accessed by opening the desired device file under /dev/: /dev/i2c-0 through /dev/i2c-

5 exist, but on the Auvidea J120 carrier only /dev/i2c-0 and /dev/i2c-1 are externally 

accessible. The 2 buses were used to connect up to 2 sensors simultaneously using the same device 

address, which required additional modification of the VL6180X API. Additionally, the API was 

ported to C++ to simplify interoperability with the VL6180X code. For calibration (as described in 

item 3.6.2), a simple program to log and average the values over a long time was created. 
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4.7 Template matching optimization: base image masking 

A common approach to improving template-based matching performance is downscaling the 

images and running template matching first on the low-resolution images to get an approximate 

match. For a precision match, template matching is run again on the original resolution images, but 

with the base image cropped to the area of the previous approximate match. Given the nature of 

regular velocity measurements within the proposed application for template matching, the first 

template matching run can be eliminated. Cropping the base image to an area around the previous 

match gives a similar result for minimal computational effort. 

It should be possible to integrate the acceleration reading of an accelerometer mounted on the car 

to be measured to very accurately determine where the template should have moved within the 

time elapsed from the last template matching execution, as the dead reckoning error should not 

accumulate considerably during the ~10 ms timeframe. The accelerometer on the FEST19 car was 

too noisy, however, due to a poor non-rigid mount and this method was not used. Instead, a simpler 

method of considering all possibilities and expanding the match area in every direction was used. 

To determine the size of the final cropped image, a small constant expansion and an expansion 

based on an assumed acceleration of 3 g starting from the previous frame capture time was added 

to the match area. While this utilizing the car’s accelerometer or assuming a smaller acceleration 

for accelerating than braking 

could further improve 

performance, the template 

matching base image size was 

still reduced considerably 

compared to the original 

resolution of the frame, as 

seen in Figure 4.1 (the 

“Expected match location” is 

what the base image was 

cropped to).  

 

 

  

Figure 4.1. Template matching frame 
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5. Results 

The proposed GSS was integrated into the control system of the FEST19 car to provide slip control. 

With the velocity reading provided by the GSS, the ideal no-slip rotational velocity for each wheel 

could be calculated and wheel slip could always be limited to ~10% above it. The original slip 

controller had no reliable feedback available and therefore needed manual tuning, which would 

only be accurate so long as external conditions, such as tire temperature, track surface & humidity, 

do not change. The slip controller with feedback from the template matching GSS was successfully 

used in the 18/19 season’s competitions. Due to time constraints and issues with the height 

sensors, further torque control integration was not attempted during the 18/19 season. 

 

 

Figure 5.1. Acceleration with a poorly tuned open-loop slip controller 

 

 

Figure 5.2. Acceleration with a slip controller utilizing the proposed GSS 
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Summary 

Machine vision provides a potential alternative to the approaches of existing commercial high-

performance non-contact ground speed sensors. A template matching GSS can be built from mostly 

off-the-shelf components, with the specific choice of component parameters directly influencing 

the final performance and cost of the GSS. The theory of operation of the proposed GSS was 

described along with the selection criteria for the sensor’s components. A working template 

matching GSS was developed, integrated into the Formula Student car and utilized for slip control 

feedback in official competitions.  

Along with the off-the-shelf components, a custom lighting solution was developed to limit the 

amount of natural sunlight reaching the camera and generate short intense pulses of light to 

overcome the camera’s limitations and achieve shorter exposures than otherwise possible. 

Additionally, an easily configurable software solution was developed and optimized. An efficient 

multi-threaded algorithm was designed to maximize utilization of the embedded computer’s GPU. 

An alternative approach to the two-step low-resolution→high-resolution template matching 

optimization technique was used, considerably limiting the area to be processed by template 

matching with only a single template matching run. 

Some aspects were not fully explored within the context of this thesis and further research needs 

to be done to determine: 

• The benefits/disadvantages of using a telecentric lens. 

• An accurate height sensing mechanism, e.g. by utilizing a car’s suspension travel sensors. 

• The accuracy and repeatability of the template matching algorithm itself, to determine the 

final accuracy of the proposed GSS. 

• Feasibility of zero-copy memory operations. 

• Feasibility of cropping the template matching base image based on integrated input from 

accelerometers. 

• The proposed sensor’s suitability for applications other than slip control. 

• Feasibility of a higher-performing template matching GSS by utilizing newer/more 

expensive components. 
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Kokkuvõte 

Masinnägemine pakub potentsiaalset alternatiivi turul eksisteerivatele suure jõudlusega 

kontaktivabadele maapinna kiiruse anduritele. Malli sobitamisel töötava anduri saab luua suures 

osas valmiskomponentidest, kusjuures anduri lõpliku jõudluse ja hinna saab määrata 

komponentide valikuga. Töös kirjeldati malli sobitamisel töötava anduri tööpõhimõtet ja 

komponentide valiku kriteeriumeid. Arendati välja töötav andur, mis integreeriti Tudengivormeli 

FEST19 vormelisse ja mida kasutati edukalt ametlikel võistlustel rehvide libisemise piiramiseks. 

Valmiskomponentidele täiendavalt loodi valgustussüsteem kaamerasse jõudva loomuliku 

päikesevalguse piiramiseks ja lühikeste intensiivsete valgusimpulsside genereerimiseks, eesmärgiga 

parandada kaamera vähimat võimalikku säriaega. Samuti loodi lihtsasti konfigureeritav ja 

optimeeritud tarkvaralahendus. Töötati välja efektiivne paralleelselt jooksutatav algoritm 

sardsüsteemi graafikavõimendi kasutuse maksimeerimiseks. Kahesammulise madala 

resolutsiooniga→kõrge resolutsiooniga malli sobitamise optimeerimismeetodi asemel kasutati 

ühesammulist ja malli sobitamisega töödeldavat ala oluliselt vähendavat meetodit. 

Mitmed aspektid jäid antud lõputöö kontekstis süvitsi uurimata; täiendavat uurimistegevust oleks 

vaja läbi viia, et leida/määrata: 

• teletsentrilise läätse kasutamise eelised/puudused, 

• täpne kõrguse mõõtmise meetod, nt. kasutades auto vedrustusandureid, 

• malli sobitamise algoritmi täpsus ja korratavus, et määrata maapinna kiiruse anduri lõplik 

täpsus, 

• kopeerimiseta mäluoperatsioonide teostatavus, 

• kiirendusandurite integreeritud lugemi põhjal kaadri kärpimise teostatavus, 

• malli sobitamisel töötava anduri sobivus teistes rakendustes (lisaks libisemise piiramisele), 

• suurema jõudlusega anduri teostatavus kasutades uuemaid/kallimaid komponente. 
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1. Lighting system PCB power schematics 

 

Figure 1.1. Adjustable 5A step down converter – main LED power supply 

 

 

Figure 1.2. Auxiliary logic 5V and 12V regulators 
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2. Code snippets 

2.1 Command line options 

Code 2.1. GlobalSettings struct from “options.hpp” 

struct GlobalSettings { 
 long LOOP_LIMIT = 0; 
 bool SINGLE_LOOPS = false; 
  
 /// CAN options 
 int CAN_ENABLED = 2; 
 int CAN_MODE = (0 << 3) + (0 << 2) + (1 << 1) + 0; 
 unsigned int CAN_TX_ID = 0x350; // gss measured speed (mm/s),  
 unsigned int CAN_TX_ID_CALC = 1420; // calculated speed 
 unsigned int CAN_TX_ID_DBG = 1421; // debug info 
 unsigned int CAN_RX_ID = 0x41A; // acceleration 
 unsigned int CAN_RX_FL = 0x2E2; 
 unsigned int CAN_RX_FR = 0x2D2; 
 unsigned int CAN_RX_RL = 0x2A2; 
 unsigned int CAN_RX_RR = 0x292; 
 unsigned int CAN_RX_ECU1 = 1328; 
 double CAN_ACC_MULTI = 2; 
  
 /// Range sensor / I2C options 
 int RANGE_ENABLED = 1; // how many sensors there are 
 int RANGE_USE = 0; // 0 - all sensors, 1 - bus #0, 2 - bus #2 
  
 /// image output window options 
 bool IMAGE_OUTPUT = true; 
 int IMAGE_SHOW_RATE = 10; 
  
 /// image saving options 
 int IMAGE_LOG = 0; // 0 - off; 1 - save first image, 2 - save image pairs  
 int IMAGE_LOG_RATE = 100; // save every <IMAGE_LOG_RATE>-th image pair 
  
 /// image matching options 
 double TEMPLATE_ERROR_PER_MS = 0.25; 
 double TEMPLATE_ERROR_OFFSET = 5; 
  
 /// picture acquisition options 
 bool GET_PICS_SLEEP = true; // whether to sleep for GET_PICS_SLEEP_T mcs after matching 
starts to get pics (true) or instead get pics when matching ends (false) 
 int GET_PICS_SLEEP_T = 5500; // microseconds 
  
 /// debug options to enable additional data logging 
 bool DBG_SIG = false; 
 bool DBG_SIG_WAIT = false; 
 bool DBG_TIMINGS = false; 
 bool DBG_TIME = false; 
 bool DBG_CAN = false; 
 bool DBG_RANGE = false; 
 //bool DBG_TRACKERS = false; //  deprecated 
  
 int LOG_LEVEL = 0; 
 int _LOG_LEVEL = DBG; /// log level is set to this after the log files have been created 
 int STDOUT_LEVEL = DBG; 
 int *MAIN_LOOP_STDOUT_LEVEL = &STDOUT_LEVEL; /// stdout level is set to the value this 
points to after program initialization ends (and before the main() while loop begins) 
 int _MAIN_LOOP_STDOUT_LEVEL; 
 bool LOG_FUNC_NAME = true; 
 bool LOG_LINE_NR = false; 
 int LOG_SEC_PRECISION = 3;  



 

56 

 /// data logging options 
 bool LOG_ACC = false; 
 int LOG_SPD = 1; 
 bool LOG_ANGLE = false; 
  
 /// image cropping options 
 bool CROP_IMAGE = true; 
 long double CROP_STOP_SPD = 75.l;  // [km/h] 
 int CROP_STOP_WHL_SPD = 15000; // [rpm] 
 //long double CROP_START = 60.l; // [km/h] 
 long double MAX_ACC = 3.0l;   // [g] 
 int CROP_ERR = 5;    // [px] 
 double CROP_T_ERR = 1;  // [px / ms] 
  
  
 /// template matching options 
 int MATCH_METHOD = 1; // Different methods 0-5  
 int TEMPL_X = 10; // Template location  
 //int TEMPL_RECT_X = 190; // Size of template 
 int TEMPL_RECT_X = 150; // Size of template 
 int TEMPL_RECT_Y = 250; 
 int TEMPL_Y = (488 - TEMPL_RECT_Y) / 2;  
  
  
 /// log file paths 
 std::string LOG_BASE_DIR = "/home/ubuntu/GSS/logs/"; // Base folder for logs (must be 
absolute! ~ does not work) 
 std::string SPEED_LOG_PREFIX = "SpeedLog-"; // possibly deprecated 
  
 /// camera options 
 /// TODO: more camera options? 
 int CAM_TIMEOUT = 100; // milliseconds camera timeout 
 int EXPOSURE = 66; //1900 //150 // Camera exposure time in us (Choosing too big exp. time 
(> ~2000) will decrease frame rate); 66 is minimum 
 float GAIN = 0.; // 0.0 - 6.9 dB 
 bool CAM_RESET = false; 
 bool CAM_FLIP = true; 
  
 
 
 int _initFromArguments(int &argc, char *argv[]); 
}; 
 
extern GlobalSettings OPTIONS; 
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2.2 Logging solution 

Code 2.2. “log.hpp” snippet 

#ifndef _LOG_H 
#define _LOG_H 
 
/// LOG LEVELS 
#define CRIT 10 
#define ERR  20 
#define WARN  30 /// <= WARN goes to ERR_FILE 
#define LOG  40 /// > WARN && < INFO goes to LOG_FILE 
#define INFO  50 /// >= INFO goes to DBG_FILE 
#define DBG  60 
 
/// equivalent to printLog(int logLevel, const char* frmt, ...)  
///  <const char* frmt, ...>   -   printf formatting 
/// usage example: printLog(CRIT, "Error nr %i occurred: %s", 13, "bad things"); 
///  prints formatted critical error to stdout and log file (depending on the 
settings in OPTIONS) 
#define printLog(...) _printLog(__FUNCTION__, __FILE__, __LINE__, __VA_ARGS__)  
 
 
// DO NOT USE _printLog()! Use printLog() (defined as a macro above) instead! 
extern "C" { 
 void _printLog(const char* FUNC, const char* FILENAME, int LINE, int logLevel, 
const char* frmt, ...); 
} 
 
#endif 
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Code 2.3. “log.cpp” snippet 

#include "log.hpp" 
 
#include <cstring> 
#include <sys/stat.h> 
#include <cerrno> 
#include <cstdarg> 
#include <string> 
 
FILE *ERR_FILE, *LOG_FILE, *DBG_FILE; 
 
 
void _printLog(const char* FUNC, const char* FILENAME, int LINE, int logLevel, const char* frmt,  
...) { 
 /// if nothing will be logged to anywhere, then quit immediately 
 if (OPTIONS.LOG_LEVEL < logLevel && OPTIONS.STDOUT_LEVEL < logLevel) return; 
  
 /// prepare variable arguments 
 va_list args; 
 va_start(args, frmt); 
  
 /// remove extension from filename 
 std::string filename = (std::string)FILENAME; 
 filename = filename.substr(0, filename.find(".")); 
  
 // resolve log level string if a defined level is used, otherwise display number 
 std::string s; 
 switch (logLevel) { 
  case CRIT: 
   s = "[CRIT]"; 
   break; 
  case ERR: 
   s = "[ERR] "; 
   break; 
  case WARN: 
   s = "[WARN]"; 
   break; 
  case LOG: 
   s = "[LOG] "; 
   break; 
  case INFO: 
   s = "[INFO]"; 
   break; 
  case DBG: 
   s = "[DBG] "; 
   break; 
  default: 
   s = "[" + std::to_string(logLevel) + "]"; 
 } 
  
 // surround the frmt argument with debug values and then printf (using the encapsulated 
frmt as the format string) 
 std::string format = getCurrentTime() + " " + s + " " + 
  (OPTIONS.LOG_FUNC_NAME ? "{" + filename + "::" + (std::string)FUNC + "}    " : "")+ 
  (std::string)frmt +  
  (OPTIONS.LOG_LINE_NR ? " (@" + std::to_string(LINE) + ")\n" : "\n"); 
 char logString[1024]; 
 std::vsprintf(logString, format.c_str(), args); 
 if (OPTIONS.STDOUT_LEVEL >= logLevel) printf("%s", (const char*)logString); 
 if (OPTIONS.LOG_LEVEL >= logLevel) { 
  auto file= (logLevel > WARN ? (logLevel >= INFO ? DBG_FILE : LOG_FILE) : ERR_FILE); 
  fprintf(file, "%s", logString); 
  fflush(file); 
 }  
} 
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2.2.1 Example log 

Code 2.4. Debug logging output 

07:05:58.434 [INFO] {can::execWriteToCan}    CAN TX:  0x350  [8]  0x27 0x83 0x00 0x47 0x33 0x2B 
0x4D 0x2D 
07:05:58.437 [DBG]  {camera::GetPicsBlockingCapture}    Starting to get pics (i: 1)... 

07:05:58.438 [INFO] {camera::ExecGetPics}    Camera trigger set in 1.247 ms (0 retries). 
07:05:58.438 [INFO] {RangeSensor::readRange}    Range 1 = 40; median/avg: 43 / 45 
07:05:58.438 [DBG]  {RangeSensor::readRange}    Range poll measurement completed. 
07:05:58.438 [INFO] {threadFn::rangeThreadFn}    Range read in 17.265 ms 

07:05:58.438 [DBG]  {RangeSensor::readRange}    Starting range poll measurement... 
07:05:58.439 [INFO] {RangeSensor::readRange}    Range 0 = 52; median/avg: 51 / 45 
07:05:58.439 [DBG]  {RangeSensor::readRange}    Range poll measurement completed. 
07:05:58.439 [INFO] {threadFn::rangeThreadFn}    Range read in 28.241 ms 

07:05:58.439 [DBG]  {RangeSensor::readRange}    Starting range poll measurement... 
07:05:58.443 [INFO] {camera::ExecGetPics}    Got a frame (1) in 5.058 ms to address 4415464 
07:05:58.445 [INFO] {camera::ExecGetPics}    Got a frame (2) in 1.708 ms to address 4415736 

07:05:58.445 [INFO] {camera::ExecGetPics}    Got both frames in 8.358 ms 
07:05:58.445 [DBG]  {camera::GetPicsBlockingCapture}    Swapping cumulatve speed (from CAN 
acceleration) tracking filters on tracker 1 and resetting the temp_filter... 
07:05:58.445 [DBG]  {camera::CopyPicsToGPU}    Copying image 1 to GPU memory from 4415464... 

07:05:58.447 [DBG]  {threadFn::outputThreadFn}    Output thread running for i = 0 
07:05:58.447 [DBG]  {camera::CopyPicsToGPU}    Copying image 2 to GPU memory from 4415736... 
07:05:58.448 [INFO] {threadFn::getPicsThreadFn}    [TIME] Got pics in 10.935 ms 
07:05:58.448 [DBG]  {matching::getChange_px}    Offset X,Y: 0 x 0 | diff X,Y: 142 x 0 

07:05:58.448 [DBG]  {matching::getChange_px}    Diff in array X,Y: 142 x 0 
07:05:58.448 [DBG]  {threadFn::getPicsThreadFn}    [MATCH] Resetting calculations on speed tracker 
1... 
07:05:58.448 [DBG]  {threadFn::outputThreadFn}    [OUTPUT] Adding movement readings (X,Y: 142 x 0) 

to speed tracker i: 0... 
07:05:58.448 [DBG]  {matching::prepareForMatching}    pepareForMatching i: 1 
07:05:58.448 [DBG]  {SpeedTracker::addReading}    Adding reading to SpeedTracker (movement X,Y: 142 
x 0) 0... 

07:05:58.448 [DBG]  {matching::prepareForMatching}    Reading template from first image... 
07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    Setting speeds from movement info... 
07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    axis 0, movementsum [mm]: 20.261895, t: 1988 

07:05:58.448 [DBG]  {threadFn::getPicsThreadFn}    CURRENT_IMAGE_I toggled (now 0) 
07:05:58.448 [DBG]  {matching::MatchingMethod}    MatchingMethod i: 1 
07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    v[i].mm_mcs: 0.010192 
07:05:58.448 [DBG]  {matching::MatchingMethod}    Getting template search area... 

07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    axis 1, movementsum [mm]: 0.000000, t: 1988 
07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    v[i].mm_mcs: 0.000000 
07:05:58.448 [INFO] {matching::MatchingMethod}    [TIME] Got template search area in 0.054 ms 
07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    axis 2, movementsum [mm]: 0.000000, t: 1988 

07:05:58.448 [DBG]  {matching::MatchingMethod}    Starting template matching (src: 648 x 488, 
templ: 250 x 150)... 
07:05:58.448 [DBG]  {SpeedTracker::setSpeeds}    v[i].mm_mcs: 0.000000 
07:05:58.448 [INFO] {threadFn::getPicsThreadFn}    [TIMING] getPicsThread sleeping for 2500 mcs... 

07:05:58.448 [DBG]  {SpeedTracker::writeLog}    Writing tracker log (calculator: 1)... 
07:05:58.448 [DBG]  {SpeedTracker::writeLog}    Writing "2019-07-03 07:05:58.448781, 0.00, 36.69, 
0.00, 0.010192, 0.000000, 0.000000, 1, 20.261895, 0.000000, 1988, 0 

" 
07:05:58.448 [INFO] {can::execWriteToCan}    CAN TX:  0x350  [8]  0x27 0xD0 0x00 0x00 0x33 0x2B 
0x5B 0x2D   
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2.3 Main function 

Code 2.5. GSS main program main function in “main.cpp” 

int main(int argc, char *argv[]) {  
#if PROFILING 
 nvtxNameOsThread(getpid(), "MAIN"); 
#endif 
  
 printLog(DBG, "Main function begin; Starting initialization..."); 
 initialize(argc, argv); 
 printLog(LOG, "Initialization completed. \n\n\n\n"); 
 
  
 if (OPTIONS.IMAGE_OUTPUT) { /// Window to show result 
  printLog(DBG, "Creating image output window..."); 
  cv::namedWindow(image_window, cv::WINDOW_AUTOSIZE); 
  cv::waitKey(1); 
  printLog(DBG, "Image output window created."); 
 } 
  
 printLog(LOG, "Starting threads..."); 
 startThreads(); 
 printLog(INFO, "Threads started."); 
 
 /// -- MAIN LOOP -- 
 printLog(DBG, "Changing STDOUT_LEVEL from %i to %i...", OPTIONS.STDOUT_LEVEL, 
*OPTIONS.MAIN_LOOP_STDOUT_LEVEL); 
 OPTIONS.STDOUT_LEVEL = *OPTIONS.MAIN_LOOP_STDOUT_LEVEL; 
  
 while (!STOP_THREADS) { 
  // show image (only works in main thread!) starting from 3. loop iteration -> 
blocked for >10 ms! 
  waitForSignal(SIG__END_MATCHING__START_SHOW); 
  int show_I = !CURRENT_IMAGE_I; 
   
  waitForSignal(SIG__OUTPUT_END__START_SHOW); 
  if (MATCH_LOOP_I < 3) continue; 
   
  if (OPTIONS.IMAGE_OUTPUT && ((MATCH_LOOP_I + OPTIONS.IMAGE_SHOW_RATE - 2) % 
OPTIONS.IMAGE_SHOW_RATE == 0)) ShowInfo(show_I); 
  //usleep(50000); 
   
  if (OPTIONS.LOOP_LIMIT > 0 && MATCH_LOOP_I > OPTIONS.LOOP_LIMIT) { 
   printLog(DBG, "Loop limit %i reached (current loop: %i). Calling exit 
handler...", OPTIONS.LOOP_LIMIT, MATCH_LOOP_I); 
   exit_handler(0); 
  } 
 } 
 return 0; 
} 
 
 
 
void ShowInfo(bool i) {  
 printLog(INFO, "Updating image in output window..."); 
 showMatchAreasOnImages(i); 
  
 auto img = cv::Mat(imgs[i][1]); 
 cv::imshow(image_window, img); 
 printLog(DBG, "Output window updated."); 
  
 printLog(DBG, "Waiting for keypresses on output window...");   
 
 /// Check if "esc" key is pressed in image window -> end loop 
 if ((cvWaitKey(3) & 255) == 27) exit_handler(1); 
 printLog(DBG, "ESC was not pressed. Returning..."); 
} 
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2.4 Multithreading auxiliary code 

Code 2.6. “threads.hpp” 

#ifndef _THREADS_H 
#define _THREADS_H 
 
#include <vector> 
#include <string> 
 
 
#define waitForSignal(sig) _waitForSignal(__FUNCTION__, sig, #sig); if 
(__builtin_expect(STOP_THREADS, 0)) break 
#define setSignal(sig)   _setSignal(__FUNCTION__, sig, #sig) 
#define unsetSignal(sig) _unsetSignal(__FUNCTION__, sig, #sig) 
 
#define _SIG_COUNT 10 
#define SIG__STARTED_MATCHING__START_GET_PICS 0 
#define SIG__MATCHING_I_SAVED__TOGGLE_I 1 
#define SIG__OUTPUT_I_SAVED__TOGGLE_I 5 
#define SIG__END_PREPARE__START_MATCHING 2 
#define SIG__END_MATCHING__START_OUTPUT 3 
#define SIG__START_GET_PICS__START_ACC_TRACKING 4 
#define SIG__OUTPUT_END__START_SHOW 6 
#define SIG__END_MATCHING__START_GET_PICS 7 
#define SIG__END_MATCHING__START_SHOW 8 
#define SIG__END_SAVE__START_NEXT_CAPTURE 9 
 
 
extern int RUNNING_THREADS; 
extern std::vector<std::string> RUNNING_THREAD_LIST; 
extern bool STOP_THREADS; 
 
 
void _waitForSignal(const char* FUNC, int i, const char* sig_name); 
void _setSignal(const char* FUNC, int i, const char* sig_name); 
void _unsetSignal(const char* FUNC, int i, const char* sig_name, bool announce=true); 
 
void startThreads(); 
void stopThreads(); 
 
 
#endif  

 

Code 2.7. “threadFn.hpp” 

#ifndef _THREADFN_H 
#define _THREADFN_H 
 
 
void getPicsThreadFn(); 
void matchThreadFn(); 
void outputThreadFn(); 
void rangeThreadFn(const int i); 
void canReaderThreadFn(); 
void accResetThreadFn(); 
 
 
#endif   
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Code 2.8. “threads.cpp” 

#include "threads.hpp" 
 
#include <unistd.h> 
#include <condition_variable> 
#include <thread> 
#include <pthread.h> 
#include <boost/algorithm/string/join.hpp> 
 
#include "threadFn.hpp" 
#include "utils_time.hpp" 
#include "log.hpp" 
#include "options.hpp" 
 
#if PROFILING 
#include "/usr/local/cuda/include/nvToolsExt.h" 
#include "/usr/local/cuda/include/cuda_profiler_api.h" 
#endif 
 
 
std::vector<std::string> RUNNING_THREAD_LIST; 
bool STOP_THREADS = false; 
 
std::thread rangeThread0, rangeThread1, outputThread, getPicsThread, canReaderThread, matchThread; 
 
 
// { 0: match started, 1: match completed, 2: got pics, 3: CURRENT_IMAGE_I toggled } 
bool SIGNAL_BOOLS[_SIG_COUNT]; 
std::condition_variable SIGNAL_VARS[_SIG_COUNT]; 
std::mutex SIGNAL_MTXS[_SIG_COUNT]; 
 
int RUNNING_THREADS = 0; 
 
 
 
void _waitForSignal(const char* FUNC, int i, const char* sig_name) { 
 auto t = getTime(); 
 if (OPTIONS.DBG_SIG) printLog(INFO, "[SIG] %s: Waiting for signal %i (%s)...", FUNC, i, sig_name); 
 std::unique_lock<std::mutex> lock(SIGNAL_MTXS[i]); 
 SIGNAL_VARS[i].wait(lock, [i]{return SIGNAL_BOOLS[i];}); 
 lock.unlock(); 
 _unsetSignal(FUNC, i, sig_name, false); 
 if (OPTIONS.DBG_SIG || OPTIONS.DBG_SIG_WAIT) printLog(INFO, "[SIG] %s: After %.3f ms got (and removed) signal %i 
(%s)", FUNC, getMs(t), i, sig_name); 
} 
 
void _setSignalValue(int i, bool val) { 
 std::lock_guard<std::mutex> lock(SIGNAL_MTXS[i]); 
 SIGNAL_BOOLS[i] = val; 
} 
 
void _setSignal(const char* FUNC, int i, const char* sig_name) { 
 if (OPTIONS.DBG_SIG) printLog(INFO, "[SIG] %s: Setting signal %i (%s)", FUNC, i, sig_name); 
 _setSignalValue(i, true); 
 SIGNAL_VARS[i].notify_all(); 
} 
 
void _unsetSignal(const char* FUNC, int i, const char* sig_name, bool announce) { 
 if (announce && OPTIONS.DBG_SIG) printLog(INFO, "[SIG] %s: Removing signal %i (%s)", FUNC, i, sig_name); 
 _setSignalValue(i, false); 
} 
 
void setThreadMaxPriority(pthread_t thId, uint offset=0) { 
    pthread_attr_t thAttr; 
    int policy = 0; 
    int max_prio_for_policy = 0; 
 
    pthread_attr_init(&thAttr); 
    pthread_attr_getschedpolicy(&thAttr, &policy); 
    max_prio_for_policy = sched_get_priority_max(policy); 
 
    pthread_setschedprio(thId, max_prio_for_policy + offset); 
    pthread_attr_destroy(&thAttr); 
}  
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void setThreadAffinity(pthread_t thId, int cpu_i) { 
 cpu_set_t cpuset; 
    CPU_ZERO(&cpuset); 
    CPU_SET(cpu_i, &cpuset); 
     
    int rc = pthread_setaffinity_np(thId, sizeof(cpu_set_t), &cpuset); 
    if (rc != 0) printLog(ERR, "Error calling pthread_setaffinity_np: %i: %s", rc, strerror(rc));  
} 
 
void startThreads() { 
 if (RUNNING_THREADS > 0) { 
  printf("ERROR: CANNOT START THREADS; THREADS ALREADY STARTED!\n"); 
 } 
  
 if (OPTIONS.CAN_ENABLED > 1) canReaderThread = std::thread(canReaderThreadFn); 
 if (OPTIONS.RANGE_ENABLED) { 
  rangeThread0 = std::thread(rangeThreadFn, 0); 
  rangeThread1 = std::thread(rangeThreadFn, 1); 
 } 
 outputThread = std::thread(outputThreadFn); 
 matchThread = std::thread(matchThreadFn); 
 getPicsThread = std::thread(getPicsThreadFn);  
#if PROFILING 
 nvtxNameOsThread(getPicsThread.native_handle(), "GetPics"); 
 nvtxNameOsThread(outputThread.native_handle(), "Output"); 
 nvtxNameOsThread(matchThread.native_handle(), "TemplateMatch"); 
#endif 
  
 setThreadMaxPriority(pthread_self(), 10); 
  
 setThreadMaxPriority(getPicsThread.native_handle()); 
  
 setThreadMaxPriority(matchThread.native_handle()); 
 setThreadAffinity(matchThread.native_handle(), 3); 
  
 setThreadMaxPriority(outputThread.native_handle()); 
  
 printLog(DBG, "Threads started: %i", RUNNING_THREADS); 
} 
 
void stopThreads() { 
#if PROFILING 
 cudaProfilerStop(); 
#endif 
  
 printLog(DBG, "Setting thread stop signal (for %i threads)...", RUNNING_THREADS); 
 STOP_THREADS = true; 
 printLog(INFO, "Thread stop signal set..."); 
  
 printLog(DBG, "Setting all signals while there are still threads running..."); 
 for (int count = 0; count < 5; count++) { 
  printLog(DBG, "%i threads still running: %s", RUNNING_THREADS, 
boost::algorithm::join(RUNNING_THREAD_LIST, ", ").c_str()); 
   
  for (int i = 0; i < _SIG_COUNT; i++) setSignal(i); 
   
  usleep(1000000); 
   
  if (RUNNING_THREADS == 0) break; 
 } 
  
 if (RUNNING_THREADS) { 
  printLog(WARN, "Exiting the program with %i threads still running: %s", RUNNING_THREADS, 
boost::algorithm::join(RUNNING_THREAD_LIST, ", ").c_str()); 
 } else {   
  printLog(INFO, "All threads have stopped."); 
 } 
} 
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2.5 Camera integration 

Code 2.9. “camera.hpp” 

#ifndef _CAMERA_H 
#define _CAMERA_H 
 
#include <m3api/xiApi.h> 
 
 
// resolution 648x488 
#define X_RES (648) 
#define Y_RES (488) 
 
/// Define camera parameters 
// Timeout replaced by OPTIONS.MAX_DELAY 
#define AEAG false   // auto exposure, auto gain 
 
 
/// Ximea Global Variables 
extern XI_IMG xiImgs[2][2]; 
 
 
// acquired image utility functions 
unsigned int getImgDelay(XI_IMG img1, XI_IMG img2); 
 
// image acquisition functions 
void GetPicsBlockingCapture(int threadI); 
 
// camera utility functions 
void SetUpCamera(); 
bool CameraConnected(); 
void ShutDownCamera(); 
 
 
#endif 

 
 

 


